Foods and Raw Materials (Sep 2014)
ANALYSIS OF THE STRUCTURAL AND MECHANICAL PROPERTIES AND MICROMORPHOLOGICAL FEATURES OF POLYMERIC FILMS BASED ON HYDROCOLLOIDS OF VEGETABLE ORIGIN USED FOR THE PRODUCTION OF BIODEGRADABLE POLYMERS
Abstract
Modern research and technology approaches to the production of biodegradable polymeric materials based on renewable resources have been reviewed. It has been found that films prepared of cellulose, chitosan, gelatin, polypeptides, casein, soy, wheat, corn, rice, and maize are being commonly used at present. The structural and mechanical properties and micromorphological features of hydrocolloids of vegetable origin promising for the production of biodegradable polymers—starches, pectins, carrageenans, and agar—have been studied. It has been determined that, with respect to strength and suitability for use in films of individual components, all the studied hydrocolloids can be arranged in ascending order as follows: starches, carrageenans, pectins, agar. According to analysis of the structural and mechanical properties of the films, it has been shown that the best parameters are found for the samples based on pectin P1 and agar A2. The breaking stress for these materials is 52 and 77 MPa, respectively. The breaking strain is 11.5 and 8.0%, respectively. Analysis of the micromorphology has revealed the formation of surface microdiscontinuities in the films based on high methoxyl pectins P1 and P4 and unmodified corn starch S3 and the formation of wavy folds in the case of the films of kappa-carrageenan C1; these folds are formed during drying and decrease the tensile strength of the respective films. The found features will be used in the development of technologies for the production of biodegradable polymeric materials based on hydrocolloids of vegetable origin with enhanced performance and processing characteristics.
Keywords