New Journal of Physics (Jan 2014)
Geometric entanglement in topologically ordered states
Abstract
Here we investigate the connection between topological order and the geometric entanglement, as measured by the logarithm of the overlap between a given state and its closest product state of blocks. We do this for a variety of topologically ordered systems such as the toric code, double semion, colour code and quantum double models. As happens for the entanglement entropy, we find that for sufficiently large block sizes the geometric entanglement is, up to possible sub-leading corrections, the sum of two contributions: a bulk contribution obeying a boundary law times the number of blocks and a contribution quantifying the underlying pattern of long-range entanglement of the topologically ordered state. This topological contribution is also present in the case of single-spin blocks in most cases, and constitutes an alternative characterization of topological order for these quantum states based on a multipartite entanglement measure. In particular, we see that the topological term for the two-dimensional colour code is twice as much as the one for the toric code, in accordance with recent renormalization group arguments (Bombin et al 2012 New J. Phys. 14 073048). Motivated by these results, we also derive a general formalism to obtain upper- and lower-bounds to the geometric entanglement of states with a non-Abelian group symmetry, and which we explicitly use to analyse quantum double models. Furthermore, we also provide an analysis of the robustness of the topological contribution in terms of renormalization and perturbation theory arguments, as well as a numerical estimation for small systems. Some of the results in this paper rely on the ability to disentangle single sites from the quantum state, which is always possible for the systems that we consider. Additionally we relate our results to the behaviour of the relative entropy of entanglement in topologically ordered systems, and discuss a number of numerical approaches based on tensor networks that could be employed to extract this topological contribution for large systems beyond exactly solvable models.