Journal of Modern Power Systems and Clean Energy (Jan 2023)

A Two-stage Stochastic Mixed-integer Programming Model for Resilience Enhancement of Active Distribution Networks

  • Hongzhou Chen,
  • Jian Wang,
  • Jizhong Zhu,
  • Xiaofu Xiong,
  • Wei Wang,
  • Hongrui Yang

DOI
https://doi.org/10.35833/MPCE.2022.000467
Journal volume & issue
Vol. 11, no. 1
pp. 94 – 106

Abstract

Read online

Most existing distribution networks are difficult to withstand the impact of meteorological disasters. With the development of active distribution networks (ADNs), more and more upgrading and updating resources are applied to enhance the resilience of ADNs. A two-stage stochastic mixed-integer programming (SMIP) model is proposed in this paper to minimize the upgrading and operation cost of ADNs by considering random scenarios referring to different operation scenarios of ADNs caused by disastrous weather events. In the first stage, the planning decision is formulated according to the measures of hardening existing distribution lines, upgrading automatic switches, and deploying energy storage resources. The second stage is to evaluate the operation cost of ADNs by considering the cost of load shedding due to disastrous weather and optimal deployment of energy storage systems (ESSs) under normal weather condition. A novel modeling method is proposed to address the uncertainty of the operation state of distribution lines according to the canonical representation of logical constraints. The progressive hedging algorithm (PHA) is adopted to solve the SMIP model. The IEEE 33-node test system is employed to verify the feasibility and effectiveness of the proposed method. The results show that the proposed model can enhance the resilience of the ADN while ensuring economy.

Keywords