Petroleum Exploration and Development (Jun 2018)

Characteristics and displacement mechanisms of the dispersed particle gel soft heterogeneous compound flooding system

  • Guang ZHAO,
  • Caili DAI,
  • Qing YOU

Journal volume & issue
Vol. 45, no. 3
pp. 481 – 490

Abstract

Read online

Abstract: Considering high temperature and high salinity in the reservoirs, a dispersed particle gel soft heterogeneous compound (SHC) flooding system was prepared to improve the micro-profile control and displacement efficiency. The characteristics and displacement mechanisms of the system were investigated via core flow tests and visual simulation experiments. The SHC flooding system composed of DPG particles and surfactants was suitable for the reservoirs with the temperature of 80−110 °C and the salinity of 1×104−10×104 mg/L. The system presented good characteristics: low viscosity, weak negatively charged, temperature and salinity resistance, particles aggregation capacity, wettability alteration on oil wet surface, wettability weaken on water wet surface, and interfacial tension (IFT) still less than 1×10−1 mN/m after aging at high temperature. The SHC flooding system achieved the micro-profile control by entering formations deeply and the better performance was found in the formation with the higher permeability difference existing between the layers, which suggested that the flooding system was superior to the surfactants, DPG particles, and polymer/surfactant compound flooding systems. The system could effectively enhance the micro-profile control in porous media through four behaviors, including direct plugging, bridging, adsorption, and retention. Moreover, the surfactant in the system magnified the deep migration capability and oil displacement capacity of the SHC flooding system, and the impact was strengthened through the mechanisms of improved displacement capacity, synergistic emulsification, enhanced wettability alteration ability and coalescence of oil belts. The synergistic effect of the two components of SHC flooding system improved oil displacement efficiency and subsequently enhanced oil recovery. Key words: soft heterogeneous compound flooding, dispersed particle gel, surfactant, synergistic effect, displacement mechanism, high temperature and high salinity reservoirs