Journal of Nutritional Science (Jan 2015)

Intestinal B0AT1 (SLC6A19) and PEPT1 (SLC15A1) mRNA levels in European sea bass (Dicentrarchus labrax) reared in fresh water and fed fish and plant protein sources

  • Simona Rimoldi,
  • Elena Bossi,
  • Sheenan Harpaz,
  • Anna Giulia Cattaneo,
  • Giovanni Bernardini,
  • Marco Saroglia,
  • Genciana Terova

DOI
https://doi.org/10.1017/jns.2015.9
Journal volume & issue
Vol. 4

Abstract

Read online

The objective of the present study was to examine the effect of diets with descending fish meal (FM) inclusion levels and the addition of salt to the diet containing the lowest FM level on growth performances, feed conversion ratio, and intestinal solute carrier family 6 member 19 (SLC6A19) and oligopeptide transporter 1 (PEPT1) transcript levels, in freshwater-adapted European sea bass (Dicentrarchus labrax). We first isolated by molecular cloning and sequenced a full-length cDNA representing the neutral amino acid transporter SLC6A19 in sea bass. The cDNA sequence was deposited in GenBank database (accession no. KC812315). The twelve transmembrane domains and the ‘de novo’ prediction of the three-dimensional structure of SLC6A19 protein (634 amino acids) are presented. We then analysed diet-induced changes in the mRNA copies of SLC6A19 and PEPT1 genes in different portions of sea bass intestine using real-time RT-PCR. Sea bass were fed for 6 weeks on different diets, with ascending levels of fat or descending levels of FM, which was replaced with vegetable meal. The salt-enriched diet was prepared by adding 3 % NaCl to the diet containing 10 % FM. SLC6A19 mRNA in the anterior and posterior intestine of sea bass were not modulated by dietary protein sources and salt supplementation. Conversely, including salt in a diet containing a low FM percentage up-regulated the mRNA copies of PEPT1 in the hindgut. Fish growth correlated positively with the content of FM in the diets. Interestingly, the addition of salt to the diet containing 10 % FM improved feed intake, as well as specific growth rate and feed conversion ratio.

Keywords