Hydrology and Earth System Sciences (Feb 2012)

Hydrological response of a small catchment burned by experimental fire

  • C. R. Stoof,
  • R. W. Vervoort,
  • J. Iwema,
  • E. van den Elsen,
  • A. J. D. Ferreira,
  • C. J. Ritsema

DOI
https://doi.org/10.5194/hess-16-267-2012
Journal volume & issue
Vol. 16, no. 2
pp. 267 – 285

Abstract

Read online

Fire can considerably change hydrological processes, increasing the risk of extreme flooding and erosion events. Although hydrological processes are largely affected by scale, catchment-scale studies on the hydrological impact of fire in Europe are scarce, and nested approaches are rarely used. We performed a catchment-scale experimental fire to improve insight into the drivers of fire impact on hydrology. In north-central Portugal, rainfall, canopy interception, streamflow and soil moisture were monitored in small shrub-covered paired catchments pre- and post-fire. The shrub cover was medium dense to dense (44 to 84%) and pre-fire canopy interception was on average 48.7% of total rainfall. Fire increased streamflow volumes 1.6 times more than predicted, resulting in increased runoff coefficients and changed rainfall-streamflow relationships &ndash; although the increase in streamflow per unit rainfall was only significant at the subcatchment-scale. Fire also fastened the response of topsoil moisture to rainfall from 2.7 to 2.1 h (<i>p</i> = 0.058), and caused more rapid drying of topsoils after rain events. Since soil physical changes due to fire were not apparent, we suggest that changes resulting from vegetation removal played an important role in increasing streamflow after fire. Results stress that fire impact on hydrology is largely affected by scale, highlight the hydrological impact of fire on small scales, and emphasize the risk of overestimating fire impact when upscaling plot-scale studies to the catchment-scale. Finally, they increase understanding of the processes contributing to post-fire flooding and erosion events.