New Journal of Physics (Jan 2016)
Synthetic-gauge-field-induced Dirac semimetal state in an acoustic resonator system
Abstract
Recently, a proposal of synthetic gauge field in reduced two-dimensional (2D) system from three-dimensional (3D) acoustic structure shows an analogue of the gapped Haldane model with fixed k _z , and achieves the gapless Weyl semimetal phase in 3D momentum space. Here, extending this approach of synthetic gauge flux, we propose a reduced square lattice of acoustic resonators, which exhibits Dirac nodes with broken effective time-reversal symmetry. Protected by an additional hidden symmetry, these Dirac nodes with quantized values of topological charge are characterized by nonzero winding number and the finite structure exhibits flat edge modes that cannot be destroyed by perturbations.
Keywords