New Journal of Physics (Jan 2014)
Self-interference of a toroidal Bose–Einstein condensate
Abstract
We demonstrate the self-interference of a single Bose–Einstein condensate on a non-simply connected geometry, focussing on a toroidally trapped ring-shaped condensate. First, we show how the opposite parts of the ring can interfere using the Wigner function representation. Then, using analytical expressions for the time-evolution of a freely expanding ring-shaped condensate with and without a persistent current, we show that the self-interference of the ring-shaped condensate is possible only in the absence of the persistent current. We conclude by proposing an experimental protocol for the creation of ring dark solitons using the toroidal self-interference.
Keywords