IEEE Journal of the Electron Devices Society (Jan 2020)

A Quantum-Well Charge-Trap Synaptic Transistor With Highly Linear Weight Tunability

  • Eunseon Yu,
  • Seongjae Cho,
  • Kaushik Roy,
  • Byung-Gook Park

DOI
https://doi.org/10.1109/JEDS.2020.3011409
Journal volume & issue
Vol. 8
pp. 834 – 840

Abstract

Read online

In this work, a novel synaptic transistor has been proposed and analyzed through technology computer-aided design (TCAD) simulation. The proposed device has merits of full-Si processing compatibility, short- and long-term plasticity, high energy efficiency, and linear and symmetric conductance adjustability. The proposed device consists of a quantum-well structure and a charge-trap unit for realizing both short- and long-term memories, respectively. The quantum-well charge-trap synaptic transistor (QW CTS) employs two independent gates to separate inference and weight adjustment operation. An optimally designed and validated QW CTS has demonstrated a highly linear and symmetric weight tunability, with an ultra-low energy consumption of ~1.5 fJ per synaptic event. The QW CTS can be a core element in the hardware-driven Si neuromorphic system.

Keywords