Fermentation (May 2024)
New Solutions in Single-Cell Protein Production from Methane: Construction of Glycogen-Deficient Mutants of <i>Methylococcus capsulatus</i> MIR
Abstract
The biotechnology of converting methane to single-cell protein (SCP) implies using fast-growing thermotolerant aerobic methanotrophic bacteria. Among the latter, members of the genus Methylococcus received significant research attention and are used in operating commercial plants. Methylococcus capsulatus MIR is a recently discovered member of this genus with the potential to be used for the purpose of SCP production. Like other Methylococcus species, this bacterium stores carbon and energy in the form of glycogen, particularly when grown under nitrogen-limiting conditions. The genome of strain MIR encodes two glycogen synthases, GlgA1 and GlgA2, which are only moderately related to each other. To obtain glycogen-free cell biomass of this methanotroph, glycogen synthase mutants, ΔglgA1, ΔglgA2, and ΔglgA1ΔglgA2, were constructed. The mutant lacking both glycogen synthases exhibited a glycogen-deficient phenotype, whereas the intracellular glycogen content was not reduced in strains defective in either GlgA1 or GlgA2, thus suggesting functional redundancy of these enzymes. Inactivation of the glk gene encoding glucokinase also resulted in a sharp decrease in glycogen content and accumulation of free glucose in cells. Wild-type strain MIR and the mutant strain ΔglgA1ΔglgA2 were also grown in a bioreactor operated in batch and continuous modes. Cell biomass of ΔglgA1ΔglgA2 mutant obtained during batch cultivation displayed high protein content (71% of dry cell weight (DCW) compared to 54% DCW in wild-type strain) as well as a strong reduction in glycogen content (10.8 mg/g DCW compared to 187.5 mg/g DCW in wild-type strain). The difference in protein and glycogen contents in biomass of these strains produced during continuous cultivation was less pronounced, yet biomass characteristics relevant to SCP production were slightly better for ΔglgA1ΔglgA2 mutant. Genome analysis revealed the presence of glgA1-like genes in all methanotrophs of the Gammaproteobacteria and Verrucomicrobia, while only a very few methanotrophic representatives of the Alphaproteobacteria possessed these determinants of glycogen biosynthesis. The glgA2-like genes were present only in genomes of gammaproteobacterial methanotrophs with predominantly halo- and thermotolerant phenotypes. The role of glycogen in terms of energy reserve is discussed.
Keywords