Fermentation (Apr 2022)

Response-Surface Statistical Optimization of Submerged Fermentation for Pectinase and Cellulase Production by <i>Mucor</i> <i>circinelloides</i> and <i>M. hiemalis</i>

  • Amal A. Al Mousa,
  • Abdallah M. A. Hassane,
  • Abd El-Rahman F. Gomaa,
  • Jana A. Aljuriss,
  • Noura D. Dahmash,
  • Nageh F. Abo-Dahab

DOI
https://doi.org/10.3390/fermentation8050205
Journal volume & issue
Vol. 8, no. 5
p. 205

Abstract

Read online

Cellulase and pectinase are degrading cellulosic and pectic substances that form plant cell walls and, thereby, they have a wide range of applications in the agro-industrial by-products recycling and food industries. In the current research, Mucor circinelloides and M. hiemalis strains were tested for their ability to produce cellulase and pectinase from tangerine peel by submerged fermentation. Experiments on five variables: temperature, pH, incubation period, inoculum size, and substrate concentration, were designed with a Box–Behnken design, as well as response surface methodology (RSM), and analysis of variance was performed. In addition, cellulase and pectinase were partially purified and characterized. At their optimum parameters, M. circinelloides and M. hiemalis afforded high cellulase production (37.20 U/mL and 33.82 U/mL, respectively) and pectinase (38.02 U/mL and 39.76 U/mL, respectively). The partial purification of M. circinelloides and M. hiemalis cellulase produced 1.73- and 2.03-fold purification with 31.12 and 32.02% recovery, respectively; meanwhile, 1.74- and 1.99-fold purification with 31.26 and 31.51% recovery, respectively, were obtained for pectinase. Partially purified cellulase and pectinase from M. circinelloides and M. hiemalis demonstrated the highest activity at neutral pH, and 70 and 50 °C, for cellulase and 50 and 60 °C, for pectinase, respectively. Moreover, 10 mM of K+ increased M. circinelloides enzymatic activity. The production of cellulase and pectinase from M. circinelloides and M. hiemalis utilizing RSM is deemed profitable for the decomposition of agro-industrial wastes.

Keywords