Fermentation (Jan 2023)

Dynamic Interplay between O<sub>2</sub> Availability, Growth Rates, and the Transcriptome of <i>Yarrowia lipolytica</i>

  • Abraham A. J. Kerssemakers,
  • Süleyman Øzmerih,
  • Gürkan Sin,
  • Suresh Sudarsan

DOI
https://doi.org/10.3390/fermentation9010074
Journal volume & issue
Vol. 9, no. 1
p. 74

Abstract

Read online

Industrial-sized fermenters differ from the laboratory environment in which bioprocess development initially took place. One of the issues that can lead to reduced productivity on a large scale or even early termination of the process is the presence of bioreactor heterogeneities. This work proposes and adopts a design–build–test–learn-type workflow that estimates the substrate, oxygen, and resulting growth heterogeneities through a compartmental modelling approach and maps Yarrowia lipolytica-specific behavior in this relevant range of conditions. The results indicate that at a growth rate of 0.1 h−1, the largest simulated volume (90 m3) reached partial oxygen limitation. Throughout the fed-batch, the cells experienced dissolved oxygen values from 0 to 75% and grew at rates of 0 to 0.2 h−1. These simulated large-scale conditions were tested in small-scale cultivations, which elucidated a transcriptome with a strong downregulation of various transporter and central carbon metabolism genes during oxygen limitation. The relation between oxygen availability and differential gene expression was dynamic and did not show a simple on–off behavior. This indicates that Y. lipolytica can differentiate between different available oxygen concentrations and adjust its transcription accordingly. The workflow presented can be used for Y. lipolytica-based strain engineering, thereby accelerating bioprocess development.

Keywords