Fermentation (May 2022)

Breeding of a High-Nisin-Yielding Bacterial Strain and Multiomics Analysis

  • Leshan Han,
  • Xiaomeng Liu,
  • Chongchuan Wang,
  • Jianhang Liu,
  • Qinglong Wang,
  • Shuo Peng,
  • Xidong Ren,
  • Deqiang Zhu,
  • Xinli Liu

DOI
https://doi.org/10.3390/fermentation8060255
Journal volume & issue
Vol. 8, no. 6
p. 255

Abstract

Read online

Nisin is a green, safe and natural food preservative. With the expansion of nisin application, the demand for nisin has gradually increased, which equates to increased requirements for nisin production. In this study, Lactococcus lactis subsp. lactis lxl was used as the original strain, and the compound mutation method was applied to induce mutations. A high-yielding and genetically stable strain (Lactobacillus lactis A32) was identified, with the nisin titre raised by 332.2% up to 5089.29 IU/mL. Genome and transcriptome sequencing was used to analyse A32 and compare it with the original lxl strain. The comparative genomics results show that 107 genes in the A32 genome had mutations and most base mutations were not located in the four well-researched nisin-related operons, nisABTCIPRK, nisI, nisRK and nisFEG: 39 single-nucleotide polymorphisms (SNPs), 34 insertion mutations and 34 deletion mutations. The transcription results show that the expression of 92 genes changed significantly, with 27 of these differentially expressed genes upregulated, while 65 were downregulated. Our findings suggest that the output of nisin increased in L. lactis strain A32, which was accompanied by changes in the DNA replication-related gene dnaG, the ABC-ATPase transport-related genes patM and tcyC, the cysteine thiometabolism-related gene cysS, and the purine metabolism-related gene purL. Our study provides new insights into the traditional genetic mechanisms involved nisin production in L. lactis, which could provide clues for a more efficient metabolic engineering process.

Keywords