New Journal of Physics (Jan 2014)
Non-monotonic projection probabilities as a function of distinguishability
Abstract
Typically, quantum superpositions, and thus measurement projections of quantum states involving interference, decrease (or increase) monotonically as a function of increased distinguishability. Distinguishability, in turn, can be a consequence of decoherence, for example caused by the (simultaneous) loss of excitation or due to inadequate mode matching (either deliberate or indeliberate). It is known that for some cases of multi-photon interference a non-monotonic decay of projection probabilities occurs, which has so far been attributed to interference between four or more photons. We show that such a non-monotonic behavior of projection probabilities is not unnatural, and can also occur for single-photon and even semiclassical states. Thus, while the effect traces its roots from indistinguishability and thus interference, the states for which this can be observed do not need to have particular quantum features.