New Journal of Physics (Jan 2019)
Attosecond x-ray transient absorption in condensed-matter: a core-state-resolved Bloch model
Abstract
Attosecond transient absorption is an ultrafast technique that has opened the possibility to study electron dynamics in condensed matter systems at its natural timescale. The extension to the x-ray regime permits one to use this powerful technique in combination with the characteristic element specificity of x-ray spectroscopy. At these timescales, the coherent effects of the electron transport are essential and have a relevant signature on the absorption spectrum. Typically, the complex light-driven dynamics requires a theoretical modeling for shedding light on the time-dependent changes in the spectrum. Here we construct a semiconductor Bloch equation model for resolving the light-induced and core-electron dynamics simultaneously, which enables to easily disentangle the interband and intraband contributions. By using the Bloch model, we demonstrate a universal feature on attosecond x-ray transient absorption spectra that emerges from the light-induced coherent intraband dynamics. This feature is linked to previous studies of light-induced Fano resonances in atomic systems.
Keywords