npj Science of Food (Mar 2023)

Metabolomics integrated with machine learning to discriminate the geographic origin of Rougui Wuyi rock tea

  • Yifei Peng,
  • Chao Zheng,
  • Shuang Guo,
  • Fuquan Gao,
  • Xiaxia Wang,
  • Zhenghua Du,
  • Feng Gao,
  • Feng Su,
  • Wenjing Zhang,
  • Xueling Yu,
  • Guoying Liu,
  • Baoshun Liu,
  • Chengjian Wu,
  • Yun Sun,
  • Zhenbiao Yang,
  • Zhilong Hao,
  • Xiaomin Yu

DOI
https://doi.org/10.1038/s41538-023-00187-1
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 10

Abstract

Read online

Abstract The geographic origin of agri-food products contributes greatly to their quality and market value. Here, we developed a robust method combining metabolomics and machine learning (ML) to authenticate the geographic origin of Wuyi rock tea, a premium oolong tea. The volatiles of 333 tea samples (174 from the core region and 159 from the non-core region) were profiled using gas chromatography time-of-flight mass spectrometry and a series of ML algorithms were tested. Wuyi rock tea from the two regions featured distinct aroma profiles. Multilayer Perceptron achieved the best performance with an average accuracy of 92.7% on the training data using 176 volatile features. The model was benchmarked with two independent test sets, showing over 90% accuracy. Gradient Boosting algorithm yielded the best accuracy (89.6%) when using only 30 volatile features. The proposed methodology holds great promise for its broader applications in identifying the geographic origins of other valuable agri-food products.