Hydrology and Earth System Sciences (Nov 2017)

Technical note: Combining quantile forecasts and predictive distributions of streamflows

  • K. Bogner,
  • K. Liechti,
  • M. Zappa

DOI
https://doi.org/10.5194/hess-21-5493-2017
Journal volume & issue
Vol. 21
pp. 5493 – 5502

Abstract

Read online

The enhanced availability of many different hydro-meteorological modelling and forecasting systems raises the issue of how to optimally combine this great deal of information. Especially the usage of deterministic and probabilistic forecasts with sometimes widely divergent predicted future streamflow values makes it even more complicated for decision makers to sift out the relevant information. In this study multiple streamflow forecast information will be aggregated based on several different predictive distributions, and quantile forecasts. For this combination the Bayesian model averaging (BMA) approach, the non-homogeneous Gaussian regression (NGR), also known as the ensemble model output statistic (EMOS) techniques, and a novel method called Beta-transformed linear pooling (BLP) will be applied. By the help of the quantile score (QS) and the continuous ranked probability score (CRPS), the combination results for the Sihl River in Switzerland with about 5 years of forecast data will be compared and the differences between the raw and optimally combined forecasts will be highlighted. The results demonstrate the importance of applying proper forecast combination methods for decision makers in the field of flood and water resource management.