New Journal of Physics (Jan 2022)

Finite-density-induced motility and turbulence of chimera solitons

  • L A Smirnov,
  • M I Bolotov,
  • D I Bolotov,
  • G V Osipov,
  • A Pikovsky

DOI
https://doi.org/10.1088/1367-2630/ac63d9
Journal volume & issue
Vol. 24, no. 4
p. 043042

Abstract

Read online

We consider a one-dimensional oscillatory medium with a coupling through a diffusive linear field. In the limit of fast diffusion this setup reduces to the classical Kuramoto–Battogtokh model. We demonstrate that for a finite diffusion stable chimera solitons, namely localized synchronous domain in an infinite asynchronous environment, are possible. The solitons are stable also for finite density of oscillators, but in this case they sway with a nearly constant speed. This finite-density-induced motility disappears in the continuum limit, as the velocity of the solitons is inverse proportional to the density. A long-wave instability of the homogeneous asynchronous state causes soliton turbulence, which appears as a sequence of soliton mergings and creations. As the instability of the asynchronous state becomes stronger, this turbulence develops into a spatio-temporal intermittency.

Keywords