New Journal of Physics (Jan 2016)

The functional integral formulation of the Schrieffer–Wolff transformation

  • Farzaneh Zamani,
  • Pedro Ribeiro,
  • Stefan Kirchner

DOI
https://doi.org/10.1088/1367-2630/18/6/063024
Journal volume & issue
Vol. 18, no. 6
p. 063024

Abstract

Read online

We revisit the Schrieffer–Wolff transformation and present a path integral version of this important canonical transformation. The equivalence between the low-energy sector of the Anderson model in the so-called local moment regime and the spin-isotropic Kondo model is usually established via a canonical transformation performed on the Hamiltonian, followed by a projection. Here we present a path integral formulation of the Schrieffer–Wolff transformation which relates the functional integral form of the partition function of the Anderson model to that of its effective low-energy model. The resulting functional integral assumes the form of a spin path integral and includes a geometric phase factor, i.e. a Berry phase. Our approach stresses the underlying symmetries of the model and allows for a straightforward generalization of the transformation to more involved models. It thus not only sheds new light on a classic problem, it also offers a systematic route of obtaining effective low-energy models and higher order corrections. This is demonstrated by obtaining the effective low-energy model of a quantum dot attached to two ferromagnetic leads.

Keywords