H2Open Journal (Dec 2022)

Bioleached laterite nano iron catalyst (BLaNFeCs)-based Fenton's degradation of selective dyes in water

  • Bhaskar Shivaswamy,
  • Basavaraj Manu,
  • M. Y. Sreenivasa

DOI
https://doi.org/10.2166/h2oj.2022.045
Journal volume & issue
Vol. 5, no. 4
pp. 713 – 721

Abstract

Read online

Iron nanocatalyst for its potential application as Fenton's catalyst for the degradation of methylene blue dye was synthesized with the fruit extract of Citrus maxima using bioleached laterite iron as a precursor. Synthesized iron particles were characterized suitably and their catalytic role in the degradation of methylene blue and rhodamine B by Fenton's oxidation was evaluated. The synthesized nanocatalyst exhibits heterogeneous catalytic properties in the degradation of methylene blue and rhodamine B with a degradation efficiency of 93.6 and 91.3%, respectively. Observed rate constants are consistent with the increase in catalyst dosage as it speeds up the reaction. The degradation of methylene blue and rhodamine B follows a pseudo-first-order reaction with a linear fit. Reusability studies confirm the reduction in the catalytic efficiency of the synthesized iron nanoparticles after five consecutive cycles. HIGHLIGHTS Synthesis and characterization of bioleached laterite nanoparticles.; Fenton's oxidation.; Degradation of selective dyes.; Sustainable replacement of natural laterite iron for commercial iron.; Reusability studies on the catalyst.;

Keywords