New Journal of Physics (Jan 2015)
Discrete-phase-randomized coherent state source and its application in quantum key distribution
Abstract
Coherent state photon sources are widely used in quantum information processing. In many applications, such as quantum key distribution (QKD), a coherent state functions as a mixture of Fock states by assuming that its phase is continuously randomized. In practice, such a crucial assumption is often not satisfied, and therefore the security of existing QKD experiments is not guaranteed. To bridge this gap, we provide a rigorous security proof of QKD with discrete-phase-randomized coherent state sources. Our results show that the performance of the discrete-phase randomization case is close to its continuous counterpart with only a small number (say, 10) of discrete phases. Compared to the conventional continuous phase randomization case, where an infinite amount of random bits are required, our result shows that only a small amount (say, 4 bits) of randomness is needed.
Keywords