IEEE Journal of the Electron Devices Society (Jan 2024)

A General Toolkit for Advanced Semiconductor Transistors: From Simulation to Machine Learning

  • Antonio J. Garcia-Loureiro,
  • Natalia Seoane,
  • Julian G. Fernandez,
  • Enrique Comesana

DOI
https://doi.org/10.1109/JEDS.2024.3401852
Journal volume & issue
Vol. 12
pp. 1057 – 1064

Abstract

Read online

This work presents an overview of a set of in-house-built software tools intended for state-of-the-art semiconductor device modelling, ranging from numerical simulators to post-processing tools and prediction codes based on statistics and machine learning techniques. First, VENDES is a 3D finite-element based quantum-corrected semi-classical/classical toolbox able to characterise the performance, scalability, and variability of transistors. MLFoMPy is a Python-based tool that post-processes IV characteristics, extracting the most relevant figures of merit and preparing the data for subsequent statistical or machine learning studies. FSM is a variability prediction tool that also pinpoints the most sensitive regions of a device to a specific source of fluctuation. Finally, we also describe machine learning-based prediction tools that were used to obtain full IV curves and specific figures of merit of devices suffering the influence of several sources of variability.

Keywords