New Journal of Physics (Jan 2013)
Exact dynamics of quantum correlations of two qubits coupled to bosonic baths
Abstract
Dynamics of the quantum entanglement and quantum discord of two qubits in two independent baths and a common bath with the Lorentzian spectrum are studied exactly in the numerical sense within the hierarchy approach. The effects of the counter-rotating-wave terms from the system–bath coherence on these quantum correlations are systematically discussed and comparisons with previous ones under the rotating-wave approximation are also performed. For two independent baths, beyond the weak system–bath coupling, the counter-rotating-wave terms essentially change evolutions of both the entanglement and quantum discord. With increase of the coupling, revival of the entanglement after a period of complete disentanglement is suppressed dramatically and finally disappears, and the quantum discord becomes smaller monotonically. For the common bath, the entanglement is also suppressed by the counter-rotating-wave terms, but the quantum discord shows quite different behaviors if initiated from spin-correlated states. In the non-Markovian regime, the quantum discord is almost not influenced by the counter-rotating-wave terms and is generally finite in the long-time evolution at arbitrary coupling while in the Markovian regime, it is significantly enhanced with the strong coupling.