New Journal of Physics (Jan 2014)

Input–output description of microwave radiation in the dynamical Coulomb blockade

  • J Leppäkangas,
  • G Johansson,
  • M Marthaler,
  • M Fogelström

DOI
https://doi.org/10.1088/1367-2630/16/1/015015
Journal volume & issue
Vol. 16, no. 1
p. 015015

Abstract

Read online

We study microwave radiation emitted by a small voltage-biased Josephson junction connected to a superconducting transmission line. An input–output formalism for the radiation field is established, using a perturbation expansion in the junction's critical current. Using output field operators solved up to the second order, we estimate the spectral density and the second-order coherence of the emitted field. For typical transmission line impedances and at frequencies below the main emission peak at the Josephson frequency, radiation occurs predominantly due to two-photon emission. This emission is characterized by a high degree of photon bunching if detected symmetrically around half of the Josephson frequency. Strong phase fluctuations in the transmission line make related nonclassical phase-dependent amplitude correlations short lived, and there is no steady-state two-mode squeezing. However, the radiation is shown to violate the classical Cauchy–Schwarz inequality of intensity cross-correlations, demonstrating the nonclassicality of the photon pair production in this region.