IEEE Journal of the Electron Devices Society (Jan 2019)
Electrical Stability of Solution-Processed a-IGZO TFTs Exposed to High-Humidity Ambient for Long Periods
Abstract
The variations in the electrical and mechanical properties of solution-processed amorphous indium-gallium-zinc-oxide thin-film transistors exposed to high-humidity ambient conditions for long periods were analyzed. When the TFT was exposed to high-humidity conditions, field-effect mobility severely decreased, while ON/OFF current ratio improved and subthreshold slope value remained nearly constant, which is different from that exposed to low-humidity condition. We found that the H2O molecules induce mechanical peeling of the active layer such that they act as acceptor-like deep states, which is very different from the prior results under low humidity condition. The variations in electrical characteristics were systematically analyzed using a technology-CAD simulation before and after exposure to highhumidity conditions.
Keywords