Journal of Modern Power Systems and Clean Energy (Jan 2024)

Optimal Planning of Hybrid AC/DC Low-Voltage Distribution Networks Considering DC Conversion of Three-Phase Four-Wire Low-Voltage AC Systems

  • Bo Zhang,
  • Lu Zhang,
  • Wei Tang,
  • Gen Li,
  • Chen Wang

DOI
https://doi.org/10.35833/MPCE.2022.000404
Journal volume & issue
Vol. 12, no. 1
pp. 141 – 153

Abstract

Read online

The increasing integration of distributed household photovoltaics (PVs) and electric vehicles (EVs) may further aggravate voltage violations and unbalance of low-voltage distribution networks (LVDNs). DC distribution networks can increase the accommodation of PVs and EVs and mitigate mutilple power quality problems by the flexible power regulation capability of voltage source converters. This paper proposes schemes to establish hybrid AC/DC LVDNs considering the conversion of the existing three-phase four-wire low-voltage AC systems to DC operation. The characteristics and DC conversion constraints of typical LVDNs are analyzed. In addition, converter configurations for typical LVDNs are proposed based on the three-phase four-wire characteristics and quantitative analysis of various DC configurations. Moreover, an optimal planning method of hybrid AC/DC LVDNs is proposed, which is modeled as a bi-level programming model considering the annual investments and three-phase unbalance. Simulations are conducted to verify the effectiveness of the proposed optimal planning method. Simulation results show that the proposed optimal planning method can increase the integration of PVs while simultaneously reducing issues related to voltage violation and unbalance.

Keywords