New Journal of Physics (Jan 2019)

Interferometric measurement of micro-g acceleration with levitated atoms

  • A Di Carli,
  • C D Colquhoun,
  • S Kuhr,
  • E Haller

DOI
https://doi.org/10.1088/1367-2630/ab1bbd
Journal volume & issue
Vol. 21, no. 5
p. 053028

Abstract

Read online

The sensitivity of atom interferometers is usually limited by the observation time of a free falling cloud of atoms in Earth’s gravitational field. Considerable efforts are currently made to increase this observation time, e.g. in fountain experiments, drop towers and in space. In this article, we experimentally study and discuss the use of magnetic levitation for interferometric precision measurements. We employ a Bose–Einstein condensate of cesium atoms with tuneable interaction and a Michelson interferometer scheme for the detection of micro- g acceleration. In addition, we demonstrate observation times of 1s, which are comparable to current drop-tower experiments, we study the curvature of our force field, and we observe the effects of a phase-shifting element in the interferometer paths.

Keywords