Shipin gongye ke-ji (Feb 2023)

Degradation Efficiency of Aflatoxin B1 by Cold Plasma

  • Shanrui LI,
  • Luling ZHAO,
  • Wenjing YAN,
  • Jianhao ZHANG

DOI
https://doi.org/10.13386/j.issn1002-0306.2022050309
Journal volume & issue
Vol. 44, no. 4
pp. 271 – 277

Abstract

Read online

Objective: To determine the optimal process conditions for the degradation of aflatoxin B1 (AFB1) by cold plasma and explore the feasibility of its application in agricultural products, this study was performed. Methods: Different excitation conditions (peak voltage, working frequency and treatment time) of cold plasma were selected to investigate the degradation effect of AFB1 in solution. The optimal degradation combination and the interaction mechanism of various factors were obtained by center composite design (CCD) response surface test, under these conditions, the degradation effect of AFB1 in corn was investigated. Results: When the concentration of AFB1 was 1000 μg/L, the degradation rate increased significantly (P<0.01) with the increasing of peak voltage, treatment time (except for 90 to 120 s), and the decrease of working frequency. After response surface optimization, the degradation rate of AFB1 was 99.62% under the optimum degradation conditions of peak voltage 160 kV, working frequency 50 Hz, and treatment time 165 s. In addition, the optimized conditions were used for corn (23.18±0.06 μg/kg) contaminated by AFB1, the degradation rate reached 39.29% at 180 s. Conclusion: The optimal degradation process of AFB1 by cold plasma technology was determined by the CCD method, and its degradation effect in corn was confirmed. The results indicated that cold plasma technology had enormous potential to reduce aflatoxin contamination in cereals.

Keywords