New Journal of Physics (Jan 2021)
A laser–plasma platform for photon–photon physics: the two photon Breit–Wheeler process
- B Kettle,
- D Hollatz,
- E Gerstmayr,
- G M Samarin,
- A Alejo,
- S Astbury,
- C Baird,
- S Bohlen,
- M Campbell,
- C Colgan,
- D Dannheim,
- C Gregory,
- H Harsh,
- P Hatfield,
- J Hinojosa,
- Y Katzir,
- J Morton,
- C D Murphy,
- A Nurnberg,
- J Osterhoff,
- G Pérez-Callejo,
- K Põder,
- P P Rajeev,
- C Roedel,
- F Roeder,
- F C Salgado,
- G Sarri,
- A Seidel,
- S Spannagel,
- C Spindloe,
- S Steinke,
- M J V Streeter,
- A G R Thomas,
- C Underwood,
- R Watt,
- M Zepf,
- S J Rose,
- S P D Mangles
Affiliations
- B Kettle
- ORCiD
- The John Adams Institute for Accelerator Science, Imperial College London , London, SW7 2AZ, United Kingdom
- D Hollatz
- Helmholtz Institut Jena , Fröbelstieg 3, 07743 Jena, Germany; Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität , 07743 Jena, Germany
- E Gerstmayr
- ORCiD
- The John Adams Institute for Accelerator Science, Imperial College London , London, SW7 2AZ, United Kingdom
- G M Samarin
- School of Mathematics and Physics, Queen’s University of Belfast , BT7 1NN, Belfast, United Kingdom
- A Alejo
- ORCiD
- School of Mathematics and Physics, Queen’s University of Belfast , BT7 1NN, Belfast, United Kingdom
- S Astbury
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
- C Baird
- ORCiD
- Department of Physics, University of York , York, YO10 5DD, United Kingdom
- S Bohlen
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- M Campbell
- CERN , Geneva, Switzerland
- C Colgan
- The John Adams Institute for Accelerator Science, Imperial College London , London, SW7 2AZ, United Kingdom
- D Dannheim
- CERN , Geneva, Switzerland
- C Gregory
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
- H Harsh
- Helmholtz Institut Jena , Fröbelstieg 3, 07743 Jena, Germany; Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität , 07743 Jena, Germany
- P Hatfield
- Department of Physics, University of Oxford , Oxford, OX1 3PU, United Kingdom
- J Hinojosa
- Center for Ultrafast Optical Science, University of Michigan , Ann Arbor, MI 48109-2099, United States of America
- Y Katzir
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
- J Morton
- AWE Aldermaston, Reading RG7 4PR, United Kingdom
- C D Murphy
- ORCiD
- Department of Physics, University of York , York, YO10 5DD, United Kingdom
- A Nurnberg
- CERN , Geneva, Switzerland
- J Osterhoff
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- G Pérez-Callejo
- Université de Bordeaux-CNRS-CEA , Centre Lasers Intenses et Applications (CELIA), UMR 5107, F-33405 Talence, France
- K Põder
- ORCiD
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- P P Rajeev
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
- C Roedel
- Helmholtz Institut Jena , Fröbelstieg 3, 07743 Jena, Germany
- F Roeder
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität , 07743 Jena, Germany
- F C Salgado
- ORCiD
- Helmholtz Institut Jena , Fröbelstieg 3, 07743 Jena, Germany; Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität , 07743 Jena, Germany
- G Sarri
- ORCiD
- School of Mathematics and Physics, Queen’s University of Belfast , BT7 1NN, Belfast, United Kingdom
- A Seidel
- Helmholtz Institut Jena , Fröbelstieg 3, 07743 Jena, Germany; Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität , 07743 Jena, Germany
- S Spannagel
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany; CERN , Geneva, Switzerland
- C Spindloe
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
- S Steinke
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
- M J V Streeter
- School of Mathematics and Physics, Queen’s University of Belfast , BT7 1NN, Belfast, United Kingdom; Physics Department, Lancaster University , Lancaster LA1 4YB, United Kingdom
- A G R Thomas
- ORCiD
- Center for Ultrafast Optical Science, University of Michigan , Ann Arbor, MI 48109-2099, United States of America; Physics Department, Lancaster University , Lancaster LA1 4YB, United Kingdom
- C Underwood
- Department of Physics, University of York , York, YO10 5DD, United Kingdom
- R Watt
- The John Adams Institute for Accelerator Science, Imperial College London , London, SW7 2AZ, United Kingdom
- M Zepf
- Helmholtz Institut Jena , Fröbelstieg 3, 07743 Jena, Germany; Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität , 07743 Jena, Germany
- S J Rose
- The John Adams Institute for Accelerator Science, Imperial College London , London, SW7 2AZ, United Kingdom
- S P D Mangles
- The John Adams Institute for Accelerator Science, Imperial College London , London, SW7 2AZ, United Kingdom
- DOI
- https://doi.org/10.1088/1367-2630/ac3048
- Journal volume & issue
-
Vol. 23,
no. 11
p. 115006
Abstract
We describe a laser–plasma platform for photon–photon collision experiments to measure fundamental quantum electrodynamic processes. As an example we describe using this platform to attempt to observe the linear Breit–Wheeler process. The platform has been developed using the Gemini laser facility at the Rutherford Appleton Laboratory. A laser Wakefield accelerator and a bremsstrahlung convertor are used to generate a collimated beam of photons with energies of hundreds of MeV, that collide with keV x-ray photons generated by a laser heated plasma target. To detect the pairs generated by the photon–photon collisions, a magnetic transport system has been developed which directs the pairs onto scintillation-based and hybrid silicon pixel single particle detectors (SPDs). We present commissioning results from an experimental campaign using this laser–plasma platform for photon–photon physics, demonstrating successful generation of both photon sources, characterisation of the magnetic transport system and calibration of the SPDs, and discuss the feasibility of this platform for the observation of the Breit–Wheeler process. The design of the platform will also serve as the basis for the investigation of strong-field quantum electrodynamic processes such as the nonlinear Breit–Wheeler and the Trident process, or eventually, photon–photon scattering.
Keywords