New Journal of Physics (Jan 2017)

Quantum circuit model for non-inertial objects: a uniformly accelerated mirror

  • Daiqin Su,
  • C T Marco Ho,
  • Robert B Mann,
  • Timothy C Ralph

DOI
https://doi.org/10.1088/1367-2630/aa71d1
Journal volume & issue
Vol. 19, no. 6
p. 063017

Abstract

Read online

We develop a quantum circuit model describing unitary interactions between quantum fields and a uniformly accelerated object in two spacetime dimensions, and apply it to a semi-transparent mirror that uniformly accelerates in the Minkowski vacuum. Our method is nonperturbative and valid for mirrors with arbitrary reflection coefficient $0\leqslant {R}_{\omega }\leqslant 1$ . We use the circuit model to calculate the radiation from an eternally accelerated mirror and obtain a finite particle flux along the past horizon provided an appropriate low frequency regularization is introduced. In addition, it is straightforward to see from our formalism that the radiation is locally squeezed. The local squeezing is closely related to cutting correlations across the horizon, which therefore may have important implications for the formation of a black hole firewall.

Keywords