Hydrology and Earth System Sciences (Oct 2019)

Detection and attribution of flood trends in Mediterranean basins

  • Y. Tramblay,
  • L. Mimeau,
  • L. Neppel,
  • F. Vinet,
  • E. Sauquet

DOI
https://doi.org/10.5194/hess-23-4419-2019
Journal volume & issue
Vol. 23
pp. 4419 – 4431

Abstract

Read online

Floods have strong impacts in the Mediterranean region and there are concerns about a possible increase in their intensity due to climate change. In this study, a large database of 171 basins located in southern France with daily discharge data with a median record length of 45 years is considered to analyze flood trends and their drivers. In addition to discharge data, outputs of precipitation, temperature, evapotranspiration from the SAFRAN reanalysis and soil moisture computed with the ISBA land surface model are also analyzed. The evolution of land cover in these basins is analyzed using the CORINE database. The trends in floods above the 95th and 99th percentiles are detected by the Mann–Kendall test and quantile regression techniques. The results show that despite the increase in extreme precipitation reported by previous studies, there is no general tendency towards more severe floods. Only for a few basins is the intensity of the most extreme floods showing significant upward trends. On the contrary, most trends are towards fewer annual flood occurrences above both the 95th and 99th percentiles for the majority of basins. The decrease in soil moisture seems to be an important driver for these trends, since in most basins increased temperature and evapotranspiration associated with a precipitation decrease are leading to a reduction in soil moisture. These results imply that the observed increase in the vulnerability to these flood events in recent decades is mostly caused by human factors such as increased urbanization and population growth rather than climatic factors.