Hydrology and Earth System Sciences (Feb 2022)

Exploring hydrologic post-processing of ensemble streamflow forecasts based on affine kernel dressing and non-dominated sorting genetic algorithm II

  • J. Xu,
  • F. Anctil,
  • M.-A. Boucher

DOI
https://doi.org/10.5194/hess-26-1001-2022
Journal volume & issue
Vol. 26
pp. 1001 – 1017

Abstract

Read online

Forecast uncertainties are unfortunately inevitable when conducting a deterministic analysis of a dynamical system. The cascade of uncertainty originates from different components of the forecasting chain, such as the chaotic nature of the atmosphere, various initial conditions and boundaries, inappropriate conceptual hydrologic modeling, and the inconsistent stationarity assumption in a changing environment. Ensemble forecasting proves to be a powerful tool to represent error growth in the dynamical system and to capture the uncertainties associated with different sources. In practice, the proper interpretation of the predictive uncertainties and model outputs will also have a crucial impact on risk-based decisions. In this study, the performance of evolutionary multi-objective optimization (i.e., non-dominated sorting genetic algorithm II – NSGA-II) as a hydrological ensemble post-processor was tested and compared with a conventional state-of-the-art post-processor, the affine kernel dressing (AKD). Those two methods are theoretically/technically distinct, yet share the same feature in that both of them relax the parametric assumption of the underlying distribution of the data (the streamflow ensemble forecast). Both NSGA-II and AKD post-processors showed efficiency and effectiveness in eliminating forecast biases and maintaining a proper dispersion with increasing forecasting horizons. In addition, the NSGA-II method demonstrated superiority in communicating trade-offs with end-users on which performance aspects to improve.