Hydrology and Earth System Sciences (Jan 2023)

Contribution of cryosphere to runoff in the transition zone between the Tibetan Plateau and arid region based on environmental isotopes

  • J. Gui,
  • J. Gui,
  • Z. Li,
  • Q. Feng,
  • Q. Cui,
  • J. Xue

DOI
https://doi.org/10.5194/hess-27-97-2023
Journal volume & issue
Vol. 27
pp. 97 – 122

Abstract

Read online

As the transition zone between the Tibetan Plateau and arid region, the Qilian Mountains are important ecological barriers and source regions of inland rivers in northwest China. In recent decades, drastic changes in the cryosphere have had a considerable impact on the formation process of water resources in the Qilian Mountains. In this study, 2164 environmental isotope samples were used to quantify the runoff components of 11 major rivers in the Qilian Mountains and investigate the influence of cryosphere changes on mountain runoff. The results show that the mountain runoff primarily originates in the cryosphere belt, which contributes approximately 82 %, 71 %, and 80 % to the Hexi inland water system, the upper stream of the Yellow River system, and the Qinghai inland river system, respectively. The maximum contribution ratio of glacier and snow meltwater to runoff occurred in May. The contribution of supra-permafrost water to runoff gradually increased from May and reached approximately 40 % in some rivers in October. Cryosphere degradation in the Qilian Mountains after the 1990s has caused a rapid increase in runoff, changes in the peak runoff time, and an increase in winter runoff. These changes in the hydrological processes bring opportunities and challenges to managing inland river water resources, and various adaptive measures to seek advantages and avoid disadvantages have been proposed. The findings from the environmental isotope analysis provide insights into understanding water resources and realizing the nexus of life, agriculture, industry, and ecological water use.