Food Science and Human Wellness (Sep 2022)
Formation of composite hydrogel of carboxymethyl konjac glucomannan/gelatin for sustained release of EGCG
Abstract
Development of functional bioinspired hydrogels that have good releases control character is necessary for the application of these materials in biomedical engineering. Herein, we report a composite hydrogel prepared from several biocompatible carboxymethyl konjac glucomannan (CKGM)/gelatin (G)/tannic acid (TA) functional nano-hydroxyapatite (TA@n-HA), which has good biodegradability and pH sensitivity. The mechanism of interaction between hydrogels was confirmed by Fourier transform infrared spectroscopy, X-ray diffraction, Scanning electron microscopy and Thermogravimetric analysis. The physico-chemical properties of CKGM/G hydrogels have been significantly improved through the incorporation of TA@n-HA within the matrix. Studies in the sustained release of epigallocatechin gallate (EGCG) demonstrated that the TA@n-HA/CKGM/G hydrogels exhibit not only better pH sensitive properties, but also enhanced biocompatibility and encapsulation in comparison to the matrix devoid of TA@n-HA. Consequently, TA@n-HA/CKGM/G hydrogels using EGCG as a drug release model show the potential for drug delivery.