Turkish Journal of Agriculture: Food Science and Technology (Dec 2021)

Antagonistic Activity of Bacillus spp. Against Fire Blight Disease In vitro and In planta

  • Haris Butt,
  • Kubilay Kurtulus Bastas

DOI
https://doi.org/10.24925/turjaf.v9isp.2486-2492.4888
Journal volume & issue
Vol. 9, no. sp
pp. 2486 – 2492

Abstract

Read online

Fire blight, affecting more than one hundred and thirty species in the Rosaceae, is probably the most destructive disease affecting pear and apple cultivars in many countries. Currently, there are no effective synthetic compounds with systemic properties. Other major problem is the occurrence and spread of strains of Erwinia amylovora with resistance to streptomycin and copper. Taken into consideration the human and environmental health, the use of biocontrol agents either as an alternative or as a supplement within an integrated fire blight management strategy has attracted worldwide attention. In this study, E. amylovora solution of 107 CFU ml-1 was treated with bio-control agents, Bacillus subtilis str. QST 713, B. amyloliquefaciens str. MBI 600 and their mixture (at solution densities of 106, 107 and 108 CFU ml-1 for each one) on Petri dishes, containing King’s B medium and, compared with positive (streptomycin sulphate) and negative (sterile distilled water) controls. In vivo studies were performed on two-year-old apple cv. Gala seedlings grown in 45-cm-diameter pots containing a sterilized mix of soil–sand–peat under controlled greenhouse conditions (85% relative humidity, 25°C temperature and 16h of day light). The plants were irrigated as needed by drip-irrigation and each pot received a mineral solution (NPK: 20–20–20) at 2 g l-1 twice. When plant shoots reached a length of 30-35 cm, bio-control agents, individually and their mixture, were applied to the plants by a hand-sprayer. Obtaining the data, 108 CFU ml-1 of Bacillus spp. suspension mixture showed strongest in vitro antibacterial effect (26mm) among the tested treatments after positive control streptomycin (28.6mm). Parallel to in vitro findings, the mixture was most effective against the pathogen on cv. Gala (66.03%). Findings show that the use of mixture of beneficial microorganisms with individual antagonistic properties against the pathogen can be an effective strategy as a natural alternative to agrochemicals in the scope of good agriculture practices.

Keywords