Hydrology and Earth System Sciences (Jan 2025)

Do land models miss key soil hydrological processes controlling soil moisture memory?

  • M. A. Farmani,
  • A. Behrangi,
  • A. Behrangi,
  • A. Gupta,
  • A. Tavakoly,
  • A. Tavakoly,
  • M. Geheran,
  • G.-Y. Niu

DOI
https://doi.org/10.5194/hess-29-547-2025
Journal volume & issue
Vol. 29
pp. 547 – 566

Abstract

Read online

Soil moisture memory (SMM), which refers to how long a perturbation in soil moisture (SM) can last, is critical for understanding climatic, hydrological, and ecosystem interactions. Most land surface models (LSMs) tend to overestimate surface soil moisture and its persistency (or SMM), sustaining spuriously large soil surface evaporation during dry-down periods. We attempt to answer a question: do LSMs miss or misrepresent key hydrological processes controlling SMM? We use a version of Noah-MP with advanced hydrology that explicitly represents preferential flow and surface ponding and provides optional schemes of soil hydraulics. We test the effects of these processes, which are generally missed by most LSMs in SMM. We compare SMMs computed from various Noah-MP configurations against that derived from the Soil Moisture Active Passive (SMAP) L3 soil moisture and in situ measurements from the International Soil Moisture Network (ISMN) from the years 2015 to 2019 over the contiguous United States (CONUS). The results suggest that (1) soil hydraulics plays a dominant role and the Van Genuchten hydraulic scheme reduces the overestimation of the long-term surface SMM produced by the Brooks–Corey scheme, which is commonly used in LSMs; (2) explicitly representing surface ponding enhances SMM for both the surface layer and the root zone; and (3) representing preferential flow improves the overall representation of soil moisture dynamics. The combination of these missing schemes can significantly improve the long-term memory overestimation and short-term memory underestimation issues in LSMs. We suggest that LSMs for use in seasonal-to-subseasonal climate prediction should, at least, adopt the Van Genuchten hydraulic scheme.