New Journal of Physics (Jan 2023)

Spatially-resolved dynamic sampling of different phasic magnetic resonances of nanoparticle ensembles in a magnetotactic bacterium Magnetospirillum magnetotacticum

  • Thomas Feggeler,
  • Johanna Lill,
  • Damian Günzing,
  • Ralf Meckenstock,
  • Detlef Spoddig,
  • Maria V Efremova,
  • Sebastian Wintz,
  • Markus Weigand,
  • Benjamin W Zingsem,
  • Michael Farle,
  • Heiko Wende,
  • Katharina J Ollefs,
  • Hendrik Ohldag

DOI
https://doi.org/10.1088/1367-2630/acc81f
Journal volume & issue
Vol. 25, no. 4
p. 043010

Abstract

Read online

Nanoscaled magnetic particle ensembles are promising building blocks for realizing magnon based binary logic. Element-specific real-space monitoring of magnetic resonance modes with sampling rates in the GHz regime is imperative for the experimental verification of future complex magnonic devices. Here we present the observation of different phasic magnetic resonance modes using the element-specific technique of time-resolved scanning transmission x-ray microscopy within a chain of dipolarly coupled Fe _3 O _4 nanoparticles (40–50 nm particle size) inside a single cell of a magnetotactic bacterium Magnetospirillum magnetotacticum . The particles are probed with 25 nm resolution at the Fe L _3 x-ray absorption edge in response to a microwave excitation of 4.07 GHz. A plethora of resonance modes is observed within multiple particle segments oscillating in- and out-of-phase, well resembled by micromagnetic simulations.

Keywords