Hydrology and Earth System Sciences (Jan 2010)

The contribution of groundwater discharge to the overall water budget of two typical Boreal lakes in Alberta/Canada estimated from a radon mass balance

  • A. Schmidt,
  • J. J. Gibson,
  • I. R. Santos,
  • M. Schubert,
  • K. Tattrie,
  • H. Weiss

Journal volume & issue
Vol. 14, no. 1
pp. 79 – 89

Abstract

Read online

Radon-222, a naturally-occurring radioisotope with a half-life of 3.8 days, was used to estimate groundwater discharge to small lakes in wetland-dominated basins in the vicinity of Fort McMurray, Canada. This region is under significant water development pressure including both oil sands mining and in situ extraction. Field investigations were carried out in March and July 2008 to measure radon-222 distributions in the water column of two lakes as a tracer of groundwater discharge. Radon concentrations in these lakes ranged from 0.5 to 72 Bq/m<sup>3</sup>, while radon concentrations in groundwaters ranged between 2000 and 8000 Bq/m<sup>3</sup>. A radon mass balance, used in comparison with stable isotope mass balance, suggested that the two lakes under investigation had quite different proportions of annual groundwater inflow (from 0.5% to about 14% of the total annual water inflow). Lower discharge rates were attributed to a larger drainage area/lake area ratio which promotes greater surface connectivity. Interannual variability in groundwater proportions is expected despite an implied seasonal constancy in groundwater discharge rates. Our results demonstrate that a combination of stable isotope and radon mass balance approaches provides information on flowpath partitioning that is useful for evaluating surface-groundwater connectivity and acid sensitivity of individual water bodies of interest in the Alberta Oil Sands Region.