New Journal of Physics (Jan 2024)
TNSA based proton acceleration by two oblique laser pulses in the presence of an axial magnetic field
Abstract
We employ two-dimensional particle-in-cell simulations to examine, in detail, the effect of a kilo-Tesla magnetic field applied along the normal of a flat TNSA target on the cutoff energy of protons/ions. The two cases of (i) normally incident single laser pulse, and (ii) two obliquely incident laser pulses are thoroughly examined. It is shown that the two-oblique-pulse configuration combined with an external magnetic field results in a stronger enhancement (56 MeV–75 MeV) in the protons’ cutoff energies than the normally incident single laser pulse with an external magnetic field (19 MeV–24 MeV). This combination of two-oblique laser pulses along with a kilo-Tesla level external magnetic field is therefore found to be highly effective in accelerating protons/ions in the TNSA regime.
Keywords