Hydrology and Earth System Sciences (Nov 2023)
Direct integration of reservoirs' operations in a hydrological model for streamflow estimation: coupling a CLSTM model with MOHID-Land
Abstract
Knowledge about streamflow regimes and values is essential for different activities and situations in which justified decisions must be made. However, streamflow behavior is commonly assumed to be non-linear, being controlled by various mechanisms that act on different temporal and spatial scales, making its estimation challenging. An example is the construction and operation of infrastructures such as dams and reservoirs in rivers. The challenges faced by modelers to correctly describe the impact of dams on hydrological systems are considerable. In this study, an already implemented solution of the MOHID-Land (where MOHID stands for HYDrodinamic MOdel, or MOdelo HIDrodinâmico in Portuguese) model for a natural flow regime in the Ulla River basin was considered as a baseline. The watershed referred to includes three reservoirs. Outflow values were estimated considering a basic operation rule for two of them (run-of-the-river dams) and considering a data-driven model of a convolutional long short-term memory (CLSTM) type for the other (high-capacity dam). The outflow values obtained with the CLSTM model were imposed in the hydrological model, while the hydrological model fed the CLSTM model with the level and the inflow of the reservoir. This coupled system was evaluated daily using two hydrometric stations located downstream of the reservoirs, resulting in an improved performance compared with the baseline application. The analysis of the modeled values with and without reservoirs further demonstrated that considering dams' operations in the hydrological model resulted in an increase in the streamflow during the dry season and a decrease during the wet season but with no differences in the average streamflow. The coupled system is thus a promising solution for improving streamflow estimates in modified catchments.