Fermentation (Mar 2023)
Green Synthesis of Copper Oxide Nanoparticles Using <i>Sesbania grandiflora</i> Leaf Extract and Their Evaluation of Anti-Diabetic, Cytotoxic, Anti-Microbial, and Anti-Inflammatory Properties in an In-Vitro Approach
Abstract
Green methods of synthesizing nanoparticles are safer than chemical and physical methods, as well as being eco-friendly and cost-efficient. In this study, we use copper oxide nanoparticles (CuO NPs) fabricated with Sesbania grandiflora (Sg) (Hummingbird tree) leaves to test the effectiveness of green synthesizing methods. The attained Sg-CuO NPs physical and optical nature is characterized by UV-Vis spectroscopy Differential Reflectance Spectroscopy (UV-Vis DRS), Fourier Transform Infra-Red spectroscopy (FTIR), X-ray Diffraction spectroscopy (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive X-ray Analysis (EDAX). UV-Vis spectrum for Sg-CuO NPs revealed a peak at 410 nm. SEM images showed the aggregation of needle-shaped particles, at a size of 33 nm. The amylase and glucosidase enzymes were inhibited by the Sg-CuO NPs up to 76.7% and 72.1%, respectively, indicating a possible antihyperglycemic effect. Fabricated Sg-CuO NPs disclosed the excellent inhibition of DPPH-free radicle formation (89.7%) and repressed protein degradation (81.3%). The results showed that Sg-CuO NPs display good anti-bacterial activity against the gram-negative (Escherichia coli and Pseudomonas aeruginosa) and gram-positive (Staphylococcus aureus). Cytotoxicity of the Sg-CuO NPs was determined using anIC50 of 37 μg/mL. Sg-CuO NPs have shown promising anti-diabetic, anti-oxidant, protein degradation-inhibiting, and anti-microbial properties. Our findings have shown that synthesized Sg-CuO NPs have biological activities that may be utilized to treat bacterial infections linked to hyperglycemia.
Keywords