New Journal of Physics (Jan 2022)
Competition between orbital effects, Pauli limiting, and Fulde–Ferrell–Larkin–Ovchinnikov states in 2D transition metal dichalcogenide superconductors
Abstract
We compare the upper critical field of bulk single-crystalline samples of the two intrinsic transition metal dichalcogenide superconductors, 2H-NbSe _2 and 2H-NbS _2 , in high magnetic fields where their layer structure is aligned strictly parallel and perpendicular to the field, using magnetic torque experiments and a high-precision piezo-rotary positioner. While both superconductors show that orbital effects still have a significant impact when the layer structure is aligned parallel to the field, the upper critical field of NbS _2 rises above the Pauli limiting field and forms a Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state, while orbital effects suppress superconductivity in NbSe _2 just below the Pauli limit, which excludes the formation of the FFLO state. From the out-of-plane anisotropies, the coherence length perpendicular to the layers of 31 Å in NbSe _2 is much larger than the interlayer distance, leading to a significant orbital effect suppressing superconductivity before the Pauli limit is reached, in contrast to the more 2D NbS _2 .
Keywords