Fermentation (Jul 2024)

Advances and Challenges in Biomanufacturing of Glycosylation of Natural Products

  • Shunyang Hu,
  • Bangxu Wang,
  • Liang Pei,
  • Jisheng Wang,
  • Ya Gan,
  • Liangzhen Jiang,
  • Bingliang Liu,
  • Jie Cheng,
  • Wei Li

DOI
https://doi.org/10.3390/fermentation10070349
Journal volume & issue
Vol. 10, no. 7
p. 349

Abstract

Read online

Glycosylation is one of the most common and important modifications in natural products (NPs), which can alter the biological activities and properties of NPs, effectively increase structural diversity, and improve pharmacological activities. The biosynthesis of glycosylation in natural products involves multiple complex biological processes, which are coordinated by many enzymes. UDP-glycosyltransferases (UGTs) play a crucial role in glycosylation modification, and have attracted long-term and widespread research attention. UGTs can catalyze the O-, C-, S-, and N-glycosylation of different substrates, producing a variety of glycosides with broad biological activity, while improving the solubility, stability, bioavailability, pharmacological activity, and other functions of NPs. In recent years, the rapid development of synthetic biology and advanced manufacturing technologies, especially the widespread application of artificial intelligence in the field of synthetic biology, has led to a series of new discoveries in the biosynthesis of NP glycosides by UGT. This work summarizes the latest progress and challenges in the field of NP glycosylation, covering the research results and potential applications of glycosylated derivatives of terpenes, flavonoids, polyphenols, aromatic compounds, and other compounds in terms of biogenesis. Looking to the future, research may leverage artificial intelligence-driven synthetic biology techniques to decipher genes related to the synthetic pathway, which is expected to further promote the large-scale synthesis and application of glycosylated NPs, and increase the diversity of NPs in the pharmaceutical, functional food, and cosmetic industries.

Keywords