Fermentation (Jan 2023)

Enhancing Biodegradation of Pyridine with Trehalose Lipid in <i>Rhodococcus pyridinivorans</i> sp. Strain HR-1-Inoculated Microbial Fuel Cell

  • Peng Cheng,
  • Muhammad Usman,
  • Muhammad Arslan,
  • Huanqing Sun,
  • Li Zhou,
  • Mohamed Gamal El-Din

DOI
https://doi.org/10.3390/fermentation9020133
Journal volume & issue
Vol. 9, no. 2
p. 133

Abstract

Read online

A Gram-positive exoelectrogen Rhodococcus pyridinivorans sp. strain HR-1 was cultivated from leachate-fed microbial fuel cell (MFC) to study the biodegradation effect of pyridine. In the comparison with mixed cultured MFC, HR-1 presented a remarkable electrical capacity with a maximum output of 4.33 W/m3 under 30 °C in neutral anolyte with 1 g/L acetate as a substrate. Further, HR-1 demonstrated the environmental resistance as a Gram-positive strain. Microbial metabolism was evident at pH between 5–9 and temperature in the range of 20–40 °C, whereas optimal condition for pyridine degradation was observed at 30 °C. This is the first study reporting the degradation of pyridine in the bio-electrochemical system that achieved a 42% ± 5% degradation rate in a full operation cycle at 2 g/L of the concentration. Considering the nonnegligible internal resistance of HR-1-inoculated MFC, trehalose lipid was also introduced as a bio-surfactant to reduce the charge transfer obstacle between the microbes and the electrodes. The surface morphology illustrated that the strain had a plump shape with a high specific area. Accordingly, bio-surfactant addition promoted the anode biomass (1.2 ± 0.1 mg/cm2 to 1.7 ± 0.2 mg/cm2) and achieved a higher degradation rate (68% ± 4%). The feasibility of electrochemical disposal on pyridine and eminent adaptability of strain sp. HR-1 as a Gram-positive exoelectrogen makes MFC a practical approach for real application.

Keywords