Journal of Food Quality and Hazards Control (Sep 2024)
Developing Flowcharts for Hazard Analysis in Seafood Retail: Critical Control Point Verification
Abstract
Background: Implementing Hazard Analysis and Critical Control Point (HACCP) management across the supply chain is promoted globally to ensure the safety of marine food products due to their rapid quality deterioration. However, many seafood retail stores deviate from adopting these practices. Therefore, in this study, we aimed to create a flowchart based on HACCP and validate it in retail stores. Methods: Chub mackerel (Scomber japonicus), scallops (Patinopecten yessoensis), and whiteleg shrimp (Litopenaeus vannamei) specimens were purchased from a supermarket from August to December 2020. The handling information of these products from receipt to sales was obtained to prepare an HACCP plan for retail stores. Groups adhering to and deviating from flowchart conditions were categorized as Critical Control Point (CCP)-compliant and CCP-deviant, respectively. Four samples of each product for each condition were analyzed. Bacterial viability was evaluated using the flat agar culture method. Escherichia coli and Vibrio parahaemolyticus were detected using the Brilliant Green-Lactose-Bile and material point methods, respectively. Product freshness was assessed by determining K-values using High-Performance Liquid Chromatography. Results were compared using Student’s t-test. Results: At elevated storage temperatures, bacterial growth rates were higher in chub mackerel and whiteleg shrimp than those in scallops. E. coli was not detected in any sample, whereas V. parahaemolyticus was detected in scallops and whiteleg shrimp but not in chub mackerel. CCP-deviant refrigerated scallops had increased V. parahaemolyticus counts; however, it did not differ between the frozen scallop and whiteleg shrimp. K-values increased more rapidly in CCP-deviant chub mackerel, whiteleg shrimp, and refrigerated scallops, but not in frozen scallops. Inadequate temperature control during display and sale markedly deteriorated the quality of marine products. Conclusion: Setting CCPs for marine food product display and sale while controlling temperature can preserve product quality. The flowchart created in this study can be broadly used for marine retail stores. DOI: 10.18502/jfqhc.11.3.16588