Hydrology and Earth System Sciences (Nov 2018)
Hybridizing Bayesian and variational data assimilation for high-resolution hydrologic forecasting
Abstract
The success of real-time estimation and forecasting applications based on geophysical models has been possible thanks to the two main existing frameworks for the determination of the models' initial conditions: Bayesian data assimilation and variational data assimilation. However, while there have been efforts to unify these two paradigms, existing attempts struggle to fully leverage the advantages of both in order to face the challenges posed by modern high-resolution models – mainly related to model indeterminacy and steep computational requirements. In this article we introduce a hybrid algorithm called OPTIMISTS (Optimized PareTo Inverse Modeling through Integrated STochastic Search) which is targeted at non-linear high-resolution problems and that brings together ideas from particle filters (PFs), four-dimensional variational methods (4D-Var), evolutionary Pareto optimization, and kernel density estimation in a unique way. Streamflow forecasting experiments were conducted to test which specific configurations of OPTIMISTS led to higher predictive accuracy. The experiments were conducted on two watersheds: the Blue River (low resolution) using the VIC (Variable Infiltration Capacity) model and the Indiantown Run (high resolution) using the DHSVM (Distributed Hydrology Soil Vegetation Model). By selecting kernel-based non-parametric sampling, non-sequential evaluation of candidate particles, and through the multi-objective minimization of departures from the streamflow observations and from the background states, OPTIMISTS was shown to efficiently produce probabilistic forecasts with comparable accuracy to that obtained from using a particle filter. Moreover, the experiments demonstrated that OPTIMISTS scales well in high-resolution cases without imposing a significant computational overhead. With the combined advantages of allowing for fast, non-Gaussian, non-linear, high-resolution prediction, the algorithm shows the potential to increase the efficiency of operational prediction systems.