New Journal of Physics (Jan 2013)

Rashba-type spin splitting at Au(111) beyond the Fermi level: the other part of the story

  • S N P Wissing,
  • C Eibl,
  • A Zumbülte,
  • A B Schmidt,
  • J Braun,
  • J Minár,
  • H Ebert,
  • M Donath

DOI
https://doi.org/10.1088/1367-2630/15/10/105001
Journal volume & issue
Vol. 15, no. 10
p. 105001

Abstract

Read online

We present a combined experimental and theoretical study of spin–orbit-induced spin splittings in the unoccupied surface electronic structure of the prototypical Rashba system Au(111). Spin- and angle-resolved inverse-photoemission measurements reveal a Rashba-type spin splitting in the unoccupied part of the L -gap surface state. With increasing momentum parallel to the surface, the spectral intensity is lowered and the spin splitting vanishes as the surface state approaches the band-gap boundary. Furthermore, we observe significantly spin-dependent peak positions and intensities for transitions between unoccupied sp-like bulk bands. Possible reasons for this behavior are considered: initial and final-state effects as well as the transition itself, which is controlled by selection rules depending on the symmetry of the involved states. Based on model calculations, we identify the initial states as origin of the observed Rashba-type spin effects in bulk transitions.