Hydrology and Earth System Sciences (Jul 2022)

Attribution of global evapotranspiration trends based on the Budyko framework

  • S. Li,
  • G. Wang,
  • C. Zhu,
  • J. Lu,
  • W. Ullah,
  • D. F. T. Hagan,
  • G. Kattel,
  • G. Kattel,
  • G. Kattel,
  • J. Peng,
  • J. Peng

DOI
https://doi.org/10.5194/hess-26-3691-2022
Journal volume & issue
Vol. 26
pp. 3691 – 3707

Abstract

Read online

Actual evapotranspiration (ET) is an essential variable in the hydrological process, linking carbon, water, and energy cycles. Global ET has significantly changed in the warming climate. Although the increasing vapor pressure deficit (VPD) enhances atmospheric water demand due to global warming, it remains unclear how the dynamics of ET are affected. In this study, using multiple datasets, we disentangled the relative contributions of precipitation, net radiation, air temperature (T1), VPD, and wind speed on the annual ET linear trend using an advanced separation method that considers the Budyko framework. We found that the precipitation variability dominantly controls global ET in the dry climates, while the net radiation has substantial control over ET in the tropical regions, and VPD impacts ET trends in the boreal mid-latitude climate. The critical role of VPD in controlling ET trends is particularly emphasized due to its influence in controlling the carbon–water–energy cycle.