IEEE Journal of the Electron Devices Society (Jan 2019)

Operation Scheme of Multi-Layer Neural Networks Using NAND Flash Memory as High-Density Synaptic Devices

  • Sung-Tae Lee,
  • Suhwan Lim,
  • Nag Yong Choi,
  • Jong-Ho Bae,
  • Dongseok Kwon,
  • Byung-Gook Park,
  • Jong-Ho Lee

DOI
https://doi.org/10.1109/JEDS.2019.2947316
Journal volume & issue
Vol. 7
pp. 1085 – 1093

Abstract

Read online

We propose a designing of multi-layer neural networks using 2D NAND flash memory cell as a high-density and reliable synaptic device. Our operation scheme eliminates the waste of NAND flash cells and allows analogue input values. A 3-layer perceptron network with 40,545 synapses is trained on a MNIST database set using an adaptive weight update method for hardware-based multi-layer neural networks. The conductance response of NAND flash cells is measured and it is shown that the unidirectional conductance response is suitable for implementing multi-layer neural networks using NAND flash memory cells as synaptic devices. Using an online-learning, we obtained higher learning accuracy with NAND synaptic devices compared to that with a memristor-based synapse regardless of weight update methods. Using an adaptive weight update method based on a unidirectional conductance response, we obtained a 94.19% learning accuracy with NAND synaptic devices. This accuracy is comparable to 94.69% obtained by synapses based on the ideal perfect linear device. Therefore, NAND flash memory which is mature technology and has great advantage in cell density can be a promising synaptic device for implementing high-density multi-layer neural networks.

Keywords