Shipin Kexue (Aug 2024)

Synthesis of Halogenated Curcumin Derivatives and Its Photodynamic Inactivation Effect on Vibrio parahaemolyticus

  • LI Yuwei, ZHAO Shuyi, HONG Gaobo, ZHANG Bin, JIAO Long, ZHANG Xiaoye

DOI
https://doi.org/10.7506/spkx1002-6630-20230831-235
Journal volume & issue
Vol. 45, no. 16
pp. 19 – 24

Abstract

Read online

In order to enhance the photodynamic inactivation (PDI) effect of curcumin, a novel class of halogenated curcumin derivatives X-cur (X = F, Cl or Br) was synthesized and screened for its potential for PDI by ultraviolet-visible (UV-Vis) absorption and fluorescence spectroscopy, singlet oxygen (1O2) generation capacity and theoretical calculations of excited states. The results demonstrated that as the relative molecular mass of the nonmetallic heavy atom halogen increased, the spin-spin coupling effect was gradually strengthened, so the smallest energy level difference (ΔEst(S1-T3)) between singlet excited state (S1) and triplet excited state (T3) (0.140 eV) and the highest spin-orbit coupling value (0.642 262 cm-1) were observed in Br-cur. This finding suggested that Br-cur was most likely to undergo transition into triplet state through intersystem crossing. Furthermore, compared to curcumin and other halogenated curcumins, Br-cur exhibited the smallest energy level difference (3.260 eV) between its S1 and ground state (S0) . Due to the aforementioned factors, Br-cur was highly prone to photooxidation and had the highest 1O2 generation capacity. Br-cur had a PDI effect on Vibrio parahaemolyticus, a prevalent foodborne pathogen in aquatic products, which depended on its concentration and light exposure duration and was significantly higher than that of curcumin. Thus, Br-cur has great potential for application as a novel PDI agent.

Keywords